双荧光素酶互补实验原理
双荧光素酶互补实验是一种基于蛋白质相互作用的检测方法,常用于研究蛋白质间的相互作用、编码序列特征以及蛋白质定位等。
该实验的原理基于以下几点:
荧光素酶(luciferase):荧光素酶是一种能够催化荧光素衍生物产生发光的酶。荧光素酶互补实验中通常使用的是两种不同的荧光素酶,如荧光素酶A和荧光素酶B。
互补性片段:荧光素酶A和荧光素酶B的编码序列被分割成两个互补性的片段,即片段A和片段B。这两个片段分别无法独立地产生功能性的荧光素酶。
蛋白质相互作用:当两个感兴趣的蛋白质相互作用时,它们会将片段A和片段B靠近并使其重新组合,形成完整的荧光素酶编码序列。这样,可以恢复荧光素酶的功能。
通过上述原理,可以进行双荧光素酶互补实验,其步骤如下:
构建质粒:将片段A和片段B分别插入到两个不同的质粒中,使它们与感兴趣的蛋白质的编码序列相连。这样,在细胞中共转染这两个质粒后,如果两个蛋白质相互作用,则它们会在细胞内产生完整的荧光素酶。
转染细胞:将构建好的质粒转染至目标细胞中,使质粒进入细胞内。
荧光检测:在一定时间后,加入荧光素底物,观察细胞是否产生荧光。只有当目标蛋白质相互作用时,荧光素酶A和荧光素酶B才会重新组合并产生功能性的荧光素酶,使细胞发出可观察到的荧光信号。如果蛋白质没有相互作用,则无法产生荧光信号。
通过上述实验,可以判断目标蛋白质是否相互作用,进而研究蛋白质间的相互作用网络、结构和功能等方面的问题。双荧光素酶互补实验被广泛应用于蛋白质相互作用的研究领域。
最新动态
-
12.22
大规模DNA合成与实验室小规模合成的技术要求有何不同?
-
12.22
银染后出现背景过深的原因有哪些?如何通过调整操作步骤优化?
-
12.22
定制化引物(如带接头、甲基化修饰)的合成周期一般多久?
-
12.19
CoIP实验如何选择合适的诱饵蛋白抗体?
-
12.18
酵母质粒小提试剂盒与大肠杆菌质粒小提的差异是什么?
-
12.18
合成DNA在引物制备、探针合成、基因芯片制备中的应用分别有哪些?
-
12.18
银染试剂盒适用于哪种凝胶类型?SDS-PAGE凝胶和非变性凝胶的银染操作有区别吗?
-
12.18
引物合成过程中可能产生哪些杂质?如何通过检测手段识别?
-
12.17
CoIP与GST pull-down、酵母双杂交技术相比,优势和局限性分别是什么?
-
12.17
EMSA实验的重复性差,如何从试剂、操作步骤等方面进行优化?


