双特异性纳米抗体制备技术路线
双特异性纳米抗体是一种具有两个独立的结合位点,可以同时结合两个不同的抗原的抗体。以下是一种常见的双特异性纳米抗体制备技术路线:
靶抗体筛选:首先,根据需要结合的两个抗原,分别制备单克隆抗体A和B。这些单克隆抗体可以通过免疫动物、混合细胞瘤技术等方法获得。
抗体重组:将单克隆抗体A和B的抗体基因分别进行测序,并根据测序结果设计引物,扩增出对应的重链和轻链基因片段。然后,使用基因重组技术将这些基因片段与适当的连接片段相连,构建出双特异性纳米抗体的基因。
抗体表达和纯化:将双特异性纳米抗体的基因导入至适合的宿主细胞中,如CHO(Chinese Hamster Ovary)细胞或HEK293细胞,并利用适当的启动子和表达载体促使基因的表达。随后,使用适当的纯化方法(如亲和层析、离子交换层析等)从细胞培养液中纯化目标抗体。
功能验证:对于制备出的双特异性纳米抗体,需要进行功能验证,确保其能够同时结合两个不同的抗原。这可以通过酶联免疫吸附试验(ELISA)、免疫组化分析、流式细胞术等方法来进行。
双特异性纳米抗体的制备是一项复杂而精细的工艺,可能需要多轮优化和筛选才能获得满意的结果。因此,在进行该技术路线时,经验丰富的科研人员和专家的指导非常重要。
最新动态
-
10.17
酵母双杂交与高通量测序技术结合,在蛋白质相互作用研究中能实现哪些新的突破和应用?
-
10.17
如何提高双荧光实验结果的可重复性和可靠性?
-
10.17
基因合成的“错误率”通常以“每kb错误碱基数”衡量,不同应用场景对错误率的可接受标准是什么?
-
10.17
DNA合成产物的退火效率如何通过非变性PAGE或动态光散射DLS验证?退火不完全会对后续实验造成什么影响?
-
10.17
多克隆抗体定制的纯化方法有哪些?不同方法的纯度与特异性差异如何?
-
10.16
双荧光实验技术有哪些最新的研究进展和发展趋势?
-
10.16
在病毒学研究中,酵母双杂交系统对于研究病毒与宿主细胞之间的蛋白质相互作用有哪些优势?
-
10.16
人工基因组(如合成大肠杆菌、酵母基因组)的构建为什么依赖基因合成技术?
-
10.16
HPLC在RNA合成产物分析中如何区分全长RNA与降解片段?检测波长和流动相选择有何特殊要求?
-
10.16
小分子半抗原的多克隆抗体定制,为何必须进行载体蛋白偶联?偶联方式如何选择?